
August 1999 The Delphi Magazine 51

COM Corner:
Top 10 ActiveForm Questions
by Steve Teixeira

ActiveForms provide a quick
and nifty means of embedding

small-scale Delphi applications
into ActiveX control containers
such as Internet Explorer or Visual
Basic applications. When used in
conjunction with a web browser,
ActiveForms also provide a conve-
nient means for delivering and
versioning these mini applications,
since the web browser is able to
handle a lot of the dirty work. How-
ever, since their inception in
Delphi 3, ActiveForms have been
one of the most mysterious fea-
tures in the product. It’s no
wonder: ActiveForms can be com-
plex, difficult to use, and they are
not particularly well documented.
Even two years after their intro-
duction, I still see many of the same
questions cropping up in
the borland.public.delphi.activex.
controls.writing newsgroup that I
saw in the Delphi 3 days.

In this article, I hope to shed
some light into the dark corners of
ActiveForm technology in order to
help you better understand where
and how to properly apply this
very useful technology, by
presenting the answers to ten of
the most common ActiveForm
questions.

ActiveForm Versus ActiveX

QWhat is an ActiveForm, how
is it different to an ActiveX?

ALooking at this question
from a strictly COM-oriented

perspective, ActiveForms and
ActiveX controls created by Delphi
are the same thing: they are both
inproc COM servers that expose a
control coclass and implement the
interfaces necessary to be consid-
ered an ActiveX control. From a
Delphi perspective, Delphi ActiveX
controls and ActiveForms embody
the same abstract idea: a COM thing

that wraps a VCL thing, thereby
enabling a VCL control to function
as an ActiveX control in ActiveX
containers.

On a more technical level,
however, there is a subtle, yet
important, architectural difference
between ActiveX controls and
ActiveForms in the Delphi world.
An ActiveX control is a fully written
VCL control for which a COM wrap-
per is generated by the wizard.
After the wizard does its, uh,
magic, your project essentially
comprises the COM wrapper, a
descendant of TActiveXControl,
which you can edit and tweak to
meet your needs. In a nutshell, the
control source code remains
rather static in nature, while the
COM wrapper’s source may
undergo many additions or
changes.

An ActiveForm is the converse of
this situation. The COM wrapper,
the TActiveFormControl class, is
defined by the VCL and remains
static, while the VCL control, a
TActiveForm, is what you will spend
most of your time developing.

Finally, another distinction
between Delphi ActiveX controls
and ActiveForms is in their use.
Because ActiveX controls encap-
sulate VCL controls, a typical
example of their use involves
having the ActiveX control as a
part of a larger application, per-
haps in a Visual Basic application
or as a widget that serves some
specific function on a web page.
Because you can stuff application-
like functionality into Active-
Forms, they are typically used to
provide mini application-like func-
tionality to a web page. As such,
there are a host of problems
associated with ActiveForms that
you won’t run across as often with
ActiveX controls, such as key-
board handling and mouse focus
issues.

Design Considerations

QI’m considering an Active-
Form to add application-like

functionality to a web page. Are
there any design considerations I
need to be aware of?

AYou bet there are! Before
anything else, you must de-

termine whether your ActiveForm
will be available on the public in-
ternet or only privately on an
intranet. Because of their rela-
tively large download size and the
security and stability problems in-
herent in web-delivered ActiveXs,
ActiveForms were really intended
as an intranet solution as opposed
to something you would throw on
any old public web page. ‘Wait a
minute,’ you’re saying to yourself,
‘what security and stability prob-
lems?’ Web-delivered ActiveX
presents a security risk because it
enables native code to run un-
checked on your machine. While
code signing works towards reduc-
ing this security risk, it does not re-
duce the stability risk. That is, no
matter how well intentioned the
author was, there is no protection
against bugs that could crash your
browser, crash your system, or do
even worse damage. And as any-
one who has spent their fair share
of time on the web knows, crashing
someone’s machine is not the way
to go about increasing traffic to
your site. Because of all this, my
recommended use of ActiveForms
is within a controlled corporate
intranet environment, where peo-
ple are actually responsible for the
code that executes on the systems
of others.

Another important design
consideration for ActiveForms
running within the context of a
web browser is to remember your
place! An ActiveForm is a guest of
the HTML page in which it resides,



52 The Delphi Magazine Issue 48

which is in turn a guest in the web
browser. If your ActiveForm is too
intrusive, or at odds metaphori-
cally with the browser UI, then it is
a rude guest. For example, it
doesn’t make sense to want to put
a menu on an ActiveForm, and you
should think twice before bringing
up other modal or modeless
windows from your ActiveForm.

Properties

QI would like to add proper-
ties to my ActiveForm and

get them to participate in the
streaming of the control. How can I
do this?

AA classic question. A typical
scenario might be that the

ActiveForm has a button and you
wish to make the caption of that
button editable by users of your
ActiveForm. Since an ActiveForm’s
representation in the type library
consists of ‘flat’ interfaces rather
than the nested components
you’re familiar with in VCL. This
means that if you have a form with
several buttons, they cannot easily
be addressed in the VCL manner
of ActiveForm.Button.Button-
Property as an ActiveForm. In-
stead, the easiest way to accom-
plish this is to surface the button
properties in question as proper-
ties of the ActiveForm itself. The
DAX framework makes adding

properties to ActiveForms a pretty
painless process: you just need to
follow a couple of steps. Here’s
what’s required to publish the Cap-
tion property of a button on an
ActiveForm.

First, add a new published prop-
erty to the ActiveForm declaration
in the implementation file. This
property will be called Button-
Caption, and it will have reader and
writer methods that modify the
Caption of the button.

Then, add a new property of the
same name to the ActiveForm’s
interface in the type library. Delphi
will automatically write the skele-
tons for the reader and writer
methods of this property, and you
must implement them by reading
and writing the ActiveForm’s
ButtonCaption property.

For example, I first add a new
property to my ActiveForm along
with a reader and writer, as in List-
ing 1. I then go to the type library
editor and add a property called
ButtonCaption to the coclass for
this ActiveForm. I implement the

skeletons as shown in Listing 2.
That’s all there is to it. Now the
ButtonCaption property will be
saved and loaded along with the
ActiveForm’s stream.

Web Deployment

QI don’t seem to be able to get
web deployment to work for

me. Can you help me figure how all
the pieces fit together?

ABob Swart provided an ex-
cellent overview of web de-

ployment in his article on
ActiveForms in the June 1997 issue
(#22), so I recommend that article
as a resource for this topic. Addi-
tionally I will say that 90% of the
problems I have seen with web de-
ployment are cause by one of a
handful of problems.

First, the browser’s web secu-
rity is set to high, so ActiveX con-
trols are not downloaded. The
solution to this problem is to
downgrade the browser security
to medium, which means you will
be warned before ActiveX content
is downloaded.

Second, Netscape Navigator
doesn’t display the ActiveForm.
This is because Navigator doesn’t
provide built-in support for
ActiveX controls. The solution is
to download a third party plugin
that enables ActiveX support,
such as the ScriptActive plugin
from NCompassLabs (who are at
www.ncompasslabs.com).

Third, the URL that references
your control, as specified in the
HTML or INF file, is incorrect. Scru-
tinize the control URL and ensure
it points to the correct location.

Finally, your ActiveForm needs
additional files that have not been
deployed to the remote machine.

type
TActiveFormX = class(TActiveForm, IActiveFormX)
...

private
function GetButtonCaption: string;
procedure SetButtonCaption(const Value: string);
Button1: TButton;

TMyActiveForm
published
property ButtonCaption: string read GetButtonCaption write SetButtonCaption;

end;
function TActiveFormX.GetButtonCaption: string;
begin
Result := Button1.Caption;

end;
procedure TActiveFormX.SetButtonCaption(const Value: string);
begin
Button1.Caption := Value;

end;

function TActiveFormX.Get_ButtonCaption: WideString;
begin
Result := ButtonCaption;

end;
procedure TActiveFormX.Set_ButtonCaption(const Value: WideString);
begin
ButtonCaption := Value;

end;

➤ Above: Listing 1 ➤ Below: Listing 2

File Required When...

StdVclxx.dll Your ActiveForm exposes properties of type IStrings, uses
any of the standard Delphi property pages, or serves as a
MIDAS client.

ShareMem.dll Your ActiveForm exports AnsiString variables.

DbClient.dll Your ActiveForm is a MIDAS client.

BDECab.dll You wish to deploy the BDE with your ActiveForm.

➤ Table 1



54 The Delphi Magazine Issue 48

The IDE automatically detects
which packages are used by your
project, but how do you know what
other files might be additionally
required? Table 1 gives a brief list
of some files that might be
required by your ActiveForm:

Initializing Properties

QHow can I initialize Active-
Form properties in my HTML

code?

AYou can set the properties of
your ActiveForm using the

PARAM tag with a NAME/VALUE pair in
your HTML code. For example, the
HTML in Listing 3 is built from the
example in the earlier properties
question and demonstrates how to
initialize the button caption to
hello.

Note that the control must sup-
port IPersistPropertyBag in order
for this technique to work. Delphi
4’s version of TActiveXControl
provides support for IPersist-
PropertyBag, whereas the Delphi 3
version does not.

Debugging

QHow do you debug an
ActiveForm?

ATake a look at Bob Swart’s
article on Creative Debugging

Techniques in the July 1999 issue
(#47), in which he explains
ActiveForm debugging techniques
in detail .

Keystrokes

QWhat is the deal with key-
strokes in ActiveForms?

AIf you’ve had to do any key-
stroke handling in Active-

Forms, you may have noticed some
flaky behavior. This reason for this
is because every container has its
own slight variation on how
keystrokes work. For example,

Internet Explorer does things dif-
ferently to Visual Basic, which
does things differently to Delphi. If
you need to do any special key-
stroke handling, the best advice I
can give you is to code for your tar-
get container. In general, there are
a couple of places to go if you need
to do special keystroke handling.
One is the VCL control’s WndProc
method. The second is TActiveX-
Control’s implementation of

IOleInPlaceActiveObject.
TranslateAccelerator

which should catch special key-
strokes such as tabs, cursor keys
and carriage returns.

Database Connections

QHow do I connect to a data-
base within an ActiveForm?

ABelieve it or not, there is no
trick to displaying and ma-

nipulating data in an ActiveForm. It
works in a manner identical to nor-
mal forms. You need only ensure
that the middleware you are using
to connect to the database is either
a part of your control’s deploy-
ment or is guaranteed to reside on
the client machines. For example, if
your application is accessing Para-
dox tables via the BDE, you should
probably deploy BdeCab.dll with
your ActiveForm so that the BDE
will be installed on the client ma-
chines when they attempt to use
the ActiveForm. Likewise, if you
are accessing an Oracle database
through non-BDE components,
then you will need to somehow

ensure that the proper Oracle
middleware is deployed or in-
stalled on client machines in order
for the ActiveForm to access data.

Working The Browser

QHow do you make the
browser do stuff from within

an ActiveForm?

ASince ActiveX controls can
run within the context of a

web browser, it makes sense that
web browsers expose functions
and interfaces that allow ActiveX
controls to manipulate them. Most
of these functions and interfaces
are located in the UrlMon unit.
Among the simplest of these func-
tions are the HlinkXXX functions,
which cause the browser to
hyperlink to different locations.
For example, the HlinkGoForward
and HlinkGoBack functions cause
the browser to travel forward or
back in its location stack.
The HlinkNavigateString function
causes the browser to travel to a
specified URL. These functions are
defined in UrlMon as shown in List-
ing 4.The pUnk parameter for each
of these functions is the IUnknown
for the ActiveForm. Since the ‘COM
part’ of the ActiveForm can be
accessed via its VclComObject
property, you can pass
IUnknown(VclComObject) in this
parameter (just pass Control as
IUnknown in the case of an ActiveX
control). The szTarget parameter
of HlinkNavigateString() repre-
sents the URL you want to use.

These methods provide a conve-
nient means for controlling the
browser from within the context of
your ActiveForm.

<HTML>
<H1> Delphi 4 ActiveX Test Page </H1><p>
You should see your Delphi 4 forms or controls embedded in the form below.
<HR><center><P>
<OBJECT
classid="clsid:831B0597-6C40-43A2-8E61-13CB3E2F7D18"
codebase="file://c:/temp/ActiveFormProj1.ocx"
width=374
height=215
align=center
hspace=0
vspace=0

>
<PARAM NAME="ButtonCaption" VALUE="hello">
</OBJECT>
</HTML>

➤ Listing 3

function HlinkGoBack(pUnk: IUnknown): HResult; stdcall;
function HlinkGoForward(pUnk: IUnknown): HResult; stdcall;
function HlinkNavigateString(pUnk: IUnknown; szTarget: PWideChar): HResult;
stdcall;

➤ Listing 4



August 1999 The Delphi Magazine 55

Data Files

QHow can I get data files from
my server to my

ActiveForm?

AThis is actually a follow-up to
the previous question, since

the real question is, ‘How can I
make the browser download files I
need from the web server for me?’
Going back to the UrlMonunit, it has
a method called URLDownloadTo-
File, which, given a URL, down-
loads a file to the client machine.
This method is defined in UrlMonas:

function URLDownloadToFile(
p1: IUnknown; p2: PChar;
p3: PChar; p4: DWORD;
p5: IBindStatusCallback):
HResult; stdcall;

p1 represents the IUnknown for the
ActiveX control, similar to the pUnk
parameter of the HlinkXXX func-
tions; p2 holds the URL of the file to
be downloaded; p3 is the name of
the local file that will be filled with
the data of the file specified by p2;
p4 must be set to 0, and p5 holds an
optional IBindStatusCallback inter-
face pointer. This interface can be

used to obtain incremental infor-
mation on the file as it downloads.

For example, let’s say my web
server has a file called fun.avi
located in its web root directory. I
could then retrieve this file to
c:\temp\fun.avi using the
following line of code:

URLDownloadToFile(
IUnknown(VCLComObject),
PChar(Format(
‘http://MyServer/fun.avi’,
‘c:\temp\fun.avi’, 0, nil);

I could also have optionally
provided an IBindStatusCallback
pointer to get information on the
download as it occurs. The disk
accompanying this issue contains
a sample application which does
just that.

Steve Teixeira is Vice President of
Software Development at DeVries
Data Systems, located in Silicon
Valley. Send those Delphi COM
questions to steve@dvdata.com


	ActiveForm Versus ActiveX
	Design Considerations
	Properties
	Web Deployment
	Initializing Properties
	Debugging
	Keystrokes
	Database Connections
	Working The Browser
	Data Files

